Curvature of Vector Bundles and Subharmonicity of Bergman Kernels
نویسنده
چکیده
In a previous paper, [1], we have studied a property of subharmonic dependence on a parameter of Bergman kernels for a family of weighted L-spaces of holomorphic functions. Here we prove a result on the curvature of a vector bundle defined by this family of L-spaces itself, which has the earlier results on Bergman kernels as a corollary. Applying the same arguments to spaces of holomorphic sections to line bundles over a locally trivial fibration we also prove that if a holomorphic vector bundle, V , over a complex manifold is ample in the sense of Hartshorne, then V ⊗ det V has an Hermitian metric with curvature strictly positive in the sense of Nakano.
منابع مشابه
Curvature of Vector Bundles Associated to Holomorphic Fibrations
Let L be a (semi)-positive line bundle over a Kähler manifold, X , fibered over a complex manifold Y . Assuming the fibers are compact and non-singular we prove that the hermitian vector bundle E whose fibers are the space of global sections to L⊗KX/Y endowed with the L-metric is (semi)-positive in the sense of Nakano. As an application we prove a partial result on a conjecture of Griffiths on ...
متن کاملVariation of Bergman kernels of adjoint line bundles
Let f : X −→ S be a smooth projective family and let (L, h) be a singular hermitian line bundle on X with semipositive curvature current. Let Ks := K(Xs, KXs +L | Xs, h | Xs)(s ∈ S) be the Bergman kernel of KXs +L | Xs with respect to h | Xs and let hB the singular hermitian metric on KX + L defined by hB |Xs := 1/Ks. We prove that hB has semipositive curvature. This is a generalization of the ...
متن کاملExponential Estimate for the asymptotics of Bergman kernels
We prove an exponential estimate for the asymptotics of Bergman kernels of a positive line bundle under hypotheses of bounded geometry. We give further Bergman kernel proofs of complex geometry results, such as separation of points, existence of local coordinates and holomorphic convexity by sections of positive line bundles.
متن کاملPara-Kahler tangent bundles of constant para-holomorphic sectional curvature
We characterize the natural diagonal almost product (locally product) structures on the tangent bundle of a Riemannian manifold. We obtain the conditions under which the tangent bundle endowed with the determined structure and with a metric of natural diagonal lift type is a Riemannian almost product (locally product) manifold, or an (almost) para-Hermitian manifold. We find the natural diagona...
متن کاملWeighted Bergman kernels on orbifolds
We describe a notion of ampleness for line bundles on orbifolds with cyclic quotient singularities that is related to embeddings in weighted projective space, and prove a global asymptotic expansion for a weighted Bergman kernel associated to such a line bundle.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008